
 

 

  
Abstract—In this paper, the relative efficiency of two-stage 

decision making units (DMUs) is estimated by modifying the product 
model proposed by Kao and Hwang (2008) and the additive model 
by Chen et al. (2009). Articles that have so far addressed the 
evaluation of two-stage units have been mainly unable to calculate 
relative efficiency. When no calculation of relative efficiency is 
available, it is not possible to form efficiency frontier, determine 
benchmark units, estimate returns to scale and so on. Based on the 
nature of two-stage models, we propose to consider them as data 
envelopment analysis models with the assurance region type II. In 
this direction, the relative efficiency of two-stage DMUs is estimated. 
The validity of the method is also proved. An example is presented to 
explain the method and draw a comparison between this method and 
other available methods of two-stage units. 
 

Keywords—Data envelopment analysis; assurance region type ii; 
relative efficiency; two-stage DMUs. 

I. INTRODUCTION 
ATA envelopment analysis (DEA), which was proposed 
by Charnes et al. [1], is a mathematical programming 

technique used to measure the relative efficiency of a group of 
decision making units (DMUs). It ascribes a weight to every 
input and output. In the DEA method, the efficiency of DMUs 
is expressed as the ratio of weighted sum of outputs to the 
weighted sum of inputs. Weights are considered as decision 
variables in DEA models. 

DMUs do not always follow the simple input-output pattern. 
Multi-stage and multi-component systems are common 
examples of decision making units with more complex 
structures. In some decision making units, using a series of 
inputs leads to production of outputs that are not considered 
the final outputs of the system. These outputs, which are 
known as the middle data, form the input of the second stage 
and yield final outputs. Such decision making units are called 
two-stage decision making units. The overall structure of two-
stage units is shown in Fig. 1.  
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Fig. 1 Two-stage decision making unit 

 
Two-stage decision making units are widely used for real 

world purposes. For instance, they are employed in banks, 
social insurance systems, etc. [2]. Numerous studies have been 
initiated since 1999 to study two-stage decision making units. 
Kao and Hwang [3] introduced a model for calculation the first 
and second stage efficiencies as well as overall system 
efficiency using the multiplier form of CCR model. They 
defined overall system efficiency as a product of the first and 
second stage efficiencies. They introduced a model, known as 
the product model, for calculation the efficiency of two-stage 
units. Chen et al. [4] considered overall system efficiency to 
be a convex combination of the first and second stage 
efficiencies and proposed a model known as the additive 
model. In addition to the aforementioned methods, which were 
based on the multiplier forms of DEA models, researchers also 
have focused on the assessment of performance of two-stage 
units based on the envelopment forms of DEA. Chen and Zhu 
[5] introduced an envelopment form for the assessment of 
performance of two-stage units with variable return to scale 
assumption. Chen et al. [6] also proved equivalence of the 
model developed by Chen and Zhu [5] in constant return to 
scale situation and dual model by Kao and Hwang [3]. Chen et 
al. [7] reported that the existing envelopment models are not 
capable of determining efficient frontier and frontier 
projection (benchmark unit) and this is a basic problem in 
evaluating two-stage units. For more information on two-stage 
DEA models see the article by Cook et al. [8]. 

One of the issues with data envelopment analysis is the 
study of the effect of assurance regions on DEA models. In 
DEA, assurance regions are divided into two groups: 1) 
assurance regions type I, which only impose constraints on 
inputs or outputs; 2) assurance regions type II, which impose 
constraints on both inputs and outputs. Application of the 
assurance regions type II on DEA models often leads to 
impossibility of calculation of relative efficiency [9]. The most 
important problems in such cases are lack of formation of an 
efficient frontier and the inability to produce a frontier 
projection. Recently, Khalili et al. [10] have introduced a 
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method for calculation of relative efficiency units with linear 
assurance regions type II. Their model is a non-linear 
programming problem.  

The multiplier models developed for calculation the 
efficiency of two-stage DMUs include two types of 
constraints, which have the nature of the assurance regions 
type II. Hence, it is possible for these models to fail to 
calculate relative efficiency. As a result, the aforementioned 
problems emerge. Some examples are provided in the second 
section of this paper to clarify the point. By considering two-
stage multiplier models as DEA models with assurance region 
type II, these models (productive and additive models) are then 
modified such that they become capable of calculating relative 
efficiency. 

Hence, the present paper includes the following sections. 
The second section discusses two-stage DEA models and their 
disadvantages. The third section proposes a method for 
calculation of relative efficiency of two-stage decision making 
units. An example is also provided for a better understanding 
of the method. The final section of the paper presents a 
conclusion. 

II. TWO-STAGE DEA 
Consider a two-stage process and assume that there are n 

decision making units. Every  uses m 

index  as its inputs to produce D index  

 as outputs for the first stage. Next, the D 

outputs are used as the input for the second stage and produce 
the outputs of this stage, which are shown by . 

This process is depicted in Fig. 1.  

A. Productive two-stage DEA 

Kao and Hwang [3] developed a model for calculation the 
efficiency in two-stage DEA. Their method is able to 
calculate overall efficiency as well as first and second stage 
efficiencies by an objective function as: 

1 1 1 1 1 1
*

s D D m s m

r ro d do d do i io r ro i io
r = d = d = i = r = i =

u y w z w z v x u y v x=   
   
   
∑ ∑ ∑ ∑ ∑ ∑  

This model is known as product model and is expressed 
as follows: 

1 1
,

s m

r ro i io
r = i =

u y v xmax ∑ ∑                              

1 1

1, 1,
s D

r rj d dj
r = d =

s.t u y w z j = …,n, 
 
 

≤∑ ∑                 (1-1)                                                                        

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑                              (1-2)          

 

 

                                                                  (1) 

Results of the product model (1) applied to measure the 
efficiency of 5 two-stage units presented in Table I are shown 
in the second column of Table II. Accordingly, none of the 
DMUs where shown to be efficient. That is to say, the product 
model (1) is not capable for calculating the relative efficiency 
of two-stage decision making units. 

Table I Five Two-stage DMUs 

 
B. Additive two-stage DEA 
Chen et al. [4] studied the overall efficiency of two-stage 

decision making units as the convex combination of the first 
and second stage efficiencies. Hence, the overall efficiency of 

 is expressed as follows: 

1 2
1 1 1 1

D m s D

r rod do i io d do
d = i = r= d =

w w z v x +w u y w z
   
      
   
∑ ∑ ∑ ∑ (2)                                     

where, 1w and 2w  are weights satisfying the relationship 
. 

Chen et al. [4] developed the following model based on 
Relation (2). This model is known as the additive model and is 
designed to assess the performance of two-stage decision 
making units.  

1 2
1 1 1 1

max ,
D m s D

d do i io r ro d do
d = i = r = d =

w w z v x +w u y w z   
   
   
∑ ∑ ∑ ∑                               

1 1

1, 1,
s D

r rj d dj
r= d =

s.t u y w z j = …,n, 
  
 

≤∑ ∑  

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑  

 
 

              (3) 

They defined 1w  and 2w as follows in order to solve the 
above model [4]:  

1
1 1 1

m m D

i io i io d do
i = i = d =

w = v x v x + w z 
 
 

∑ ∑ ∑  

2
1 1 1

D m D

d do i io d do
d = i = d =

w = w z v x + w z 
 
 

∑ ∑ ∑  

Hence, model (3) is transformed into the following model as: 

1 1 1 1
max

D s m D

d do r ro i io d do
d = r = i = d =

w z + u y v x + w z ,   
   
   
∑ ∑ ∑ ∑                                                                                

( )
1 1

1, 1,
s D

r rj d dj
r= d =

s.t u y w z j = …,n,≤∑ ∑                (4-1)                                                                                                 

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑                      (4-2)                                                                                                     

 
 

                                              (4) 
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As seen in the fourth column of Table II, none of the DMUs 
in Table I are shown to be efficient by solving model (4). That 
is to say, the additive model (4) is not capable of calculating 
the relative efficiency based on the data presented in Table I. 

 
Table II Measuring overall efficiency of DMUs in Table I 

 
Therefore, there is a basic problem in two-stage models which 
they are not able to calculate relative efficiency, while the first 
aim of DEA is comparing DMUs together. 

III. RELATIVE EFFICIENCY 
As mentioned, constraints (1-1) and (1-2) in model (1) and 

constraints (4-1) and (4-2) in model (4) have the nature of the 
assurance region type II. Presence of assurance region type II 
in these models is the main cause of their inability to calculate 
relative efficiency. Hence, these models are considered as 
DEA models with assurance region type II and modifications 
were performed to calculate the relative efficiency of two-
stage units.  

A. Relative efficiency in product two-stage DEA 
By applying the method developed by Thompson and Thrall 

[11] to model (1), the following fractional model is obtained 
for calculation of relative efficiency of two-stage decision 
making units: 

( ) 1 1

1,..., 1 1
max

s m

r ro i io
r = i =

s m

r rj i ijj n r = i =

u y v x

u y v x
f v,u,w = max ,

=

 
 
 

 
 
 

∑ ∑

∑ ∑
   

( )
1 1

1, 1,
s D

r rj d dj
r= d =

s.t u y w z j = …,n,≤∑ ∑                      (5-1)                    

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑                                 (5-2)                    

 
 

                                              (5) 

We define 
1,..., 1 1

max
s m

r rj i ij
j n r= i=

c = u y v x
=

 
 
 
∑ ∑ . According to 

constraints (5-1) and (5-2), 1c ≤ . The values of all input and 
output factors as well as middle data are larger than zero and 
thus 0c ≥  . Hence, based on Khalili et al. [10], the following 
model is developed as: 

( )
1 1

1 s m

r ro i io
r= i =

g v,u,w,c = max u y v x ,
c

 
  
 
∑ ∑                                                     

1 1
. 1,

s m

r rj i ij
r = i =

u y v xs t c, j = …,n, 
 
 

≤∑ ∑  

( )
1 1

1, 1,
s D

r rj d dj
r= d =

u y w z j = …,n,≤∑ ∑  

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑  

 
 

                                                 (6) 
The above model is rewritten based on the variable 

transformation introduced by Charnes and Cooper [12] as 
follows: 

( )
1

s

r ro
r=

k v,u,w,c = max u y ,∑                                                                   

1

1,
m

i io
i=

s.t c v x =∑  

1 1

0, 1,
s m

r rj i ij
r= i=

u y c v x j = …,n,− ≤ 
 
 

∑ ∑  

1 1

0, 1,
D m

d dj i ij
d= i=

w z v x j = …,n,− ≤∑ ∑  

1 1

0, 1,
s D

r rj d dj
r= d=

u y w z j = …,n,− ≤∑ ∑  

 
 

                                              (7) 
Definition 1:  is an efficient two-stage decision 

making unit if the optimal value of model (7) is 1 and all 
variables have positive values, for at least one optimal 
solution. 

Theorem 2: Models (5) and (6) are equivalent as they have 
equal optimal objective values. 

Proof: Assume ( )v,u,w,c is an optimal solution to model 

(6). Therefore, ( )v,u,w  is a feasible solution to model (5). 

Moreover, since 
1,..,

1 1

max
j n

s m

r rj i ij
r= i =

c u y v x
=

  ≥  
  
∑ ∑  and 0 1c≤ ≤  

then: 

( )
{ }

( )

( ) ( )

1,...,
1 1

1 1 1 1

1,..., 1 1

11 max

max

s m

r rj i ijj n
r= i =

s m s m

r ro i io r ro i io
r= i = r= i =

s m

r rj i ij
j n r= i =

u y v x
c

g v,u,w,c f v,u,w

u y v x u y v x

cu y v x

=

=

  
 
  

≥ ⇒

≥

⇒ ≤

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

 

Hence, the optimal value of model (6) is less than or equal 
to the optimal value of model (5). 

On the other hand, if   is an optimal solution to 

model (5) and
1,..,

1 1

max
j n

s m

r rj i ij
r= i =

c u y v x
=

  =  
  
∑ ∑ , then  

is a feasible solution to model (6). In addition,  
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1,..., 1 1

11 max
s m

r rj i ijj n r = i =
u y v x

c=

 
⇒ 

 
∑ ∑ =  

( ) { }
( ) ( ) ( )

1,...,
1 1 1 1

1 1

max
s m s m

r ro i io r rj i ijj n
r= i = r= i =

s m

r ro i io
r= i =

u y v x u y v x

u y v x c g v,u,w,c f v,u,w

=

⇒= =

∑ ∑ ∑ ∑

∑ ∑
 

Therefore, if ( )v,u,w,c  is an optimal solution to model 

(6), then  and . 
Hence, the optimal value of model (5) is less than or equal to 
the optimal value of model (6). It is concluded that the optimal 
values of (5) and (6) are equal.  

Accordingly, the efficiency values obtained by models (5) 
and (6) are equal. Therefore, instead of solving model (5), 
which gives the relative efficiency of two-stage decision 
making units, it is possible to use model (6) to calculate the 
relative efficiency of two-stage units. 

Theorem 3: Models (6) is equivalent to model (7). 
Proof: Assume ( )v,u,w,c  is an optimal solution to model 

(6). If
1

1
m

i io
i =

t = c v x
 
  
 
∑ , then ( ) ( )V,U,W,c = tv,tu,tw,c  is a 

feasible solution to model (7). On the other hand,  

( )

( )

1 1

1 1

s s

r ro r ro
r= r=

s m

r ro i io
r= i =

c

k V,U,W,c = U y = t u y

= u y v x = g v,u,w,c
 
  
 

∑ ∑

∑ ∑
 

Hence, the optimal value of model (6) is less than or equal 
to the optimal value of model (7). 

If  is the optimal solution to model (7), it is a 

feasible solution to model (6) too. Moreover,  

( ) ( )
( )

1 1

1

1

s m

r ro i io
r= i =

s

r ro
r=

g V,U,W,C = U y C V x

= U y = k V,U,W,C

∑ ∑

∑
 

Therefore, the optimal value of model (7) is less than or 
equal to the optimal value of model (6). In this case, the 
optimal values of models (6) and (7) are equal and these 
models are equivalent accordingly.  

Result 4: Models (5) and (7) are equivalent in terms of their 
optimal values. 

Result 5: Model (6) calculates the relative efficiency of 
two-stage units.  

Result 6: Model (7) calculates the relative efficiency of 
two-stage units. 

Based on the above mentioned theorems and results, we can 
define the concept of reference point (DMU) for non-efficient 
units.  

 
Definition 7: Consider ( )v,u,w,c  as an optimal solution 

for evaluating by model (10).   is a reference 

for , if  
 

1 1

0
s m

r rp i ip
r= i =

u y c v x−   = 
 

∑ ∑  

B. Relative efficiency in additive two-stage DEA 
In order to calculate relative efficiency by the additive two-

stage DEA model the above process is iterated and model (4) 
is transformed into the following fractional model as: 

( ) 1 1 1 1

1,...,

1 1 1 1

max

D s D s

d do r ro d dj r rj
d = r= d = r=

D m D mj n

d do i io d dj i ij
d = i = d = i =

w z + u y w z + u y
F v,u,w = max

w z + v x w z + v x
=

   
       
         

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
  

1 1
1, 1,

s D

r rj d dj
r = d =

s.t u y w z j = …,n, 
≤ 

 
∑ ∑  

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑  

 
 

                                                  (8) 

If 
1 1 1 11,...,

max
D s D m

d dj r rj d dj i ij
d = r = d = i =j n

w z + u y w z + v xc
=

    
    

    
= ∑ ∑ ∑ ∑ , the 

following fractional model is derived from model (8): 

( )
1 1 1 1

1 D s D m

d do r ro d do i io
d = r = d = i =

G v,u,w,c = max w z + u y w z + v x ,
c

    
    
    
∑ ∑ ∑ ∑

                                              

1 1 1 1

.

1,

D s D m

rd dj rj d dj i ij
d = r= d = i =

s t w z + u y w z + v x c,

j = …,n,

   
      
   

≤∑ ∑ ∑ ∑  

1 1

1, 1,
s D

r rj d dj
r= d =

u y w z j = …,n,
 
  
 

≤∑ ∑  

1 1
1, 1,

D m

d dj i ij
d = i =

w z v x j = …,n, 
 
 

≤∑ ∑  

 
 

                                                  (9) 
The above model can be rewritten as follows according to 

the method introduced by Charnes and Cooper [12]: 

( )
1 1

D s

d do r ro
d = r =

K v,u,w,c = max w z + u y ,∑ ∑                                                                                               

1 1
. 1

D m

d do i io
d = i =

s t c w z + v x = , 
 
 
∑ ∑  

1 1 1 1

1,... ,

( ) 0,
D s D m

d dj r rj d dj i ij
d = r= d = i =

j = ,n

w z u y c w z v x+ − + ≤∑ ∑ ∑ ∑  

1 1

0, 1,
D m

d dj i ij
d= i=

w z v x j = …,n,− ≤∑ ∑  

1 1

0, 1,
s D

r rj d dj
r= d=

u y w z j = …,n,− ≤∑ ∑  
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0, 1,iv i = …,m,≥  

0, 1,ru r = …,s,≥  

0, 1,dw d = …,D,≥                                      (10) 

Definition 8: oDMU  is an efficient two-stage unit if the 
optimal value of model (10) is equal to 1 and all variables 
have positive values, for at least one optimal solution. 
Theorem 9: Models (8) and (9) are equivalent. 

Proof: If ( )v,u,w,c is the optimal solution to model (9), 

then ( )v,u,w  is a feasible solution to model (8). In addition, if 

( )v,u,w  is an optimal solution to model (8), then 

( ) ( )F v,u,w F v,u,w≤ . In model (9) 

1,..., 1 1 1 1
ax

D s D m

d dj r rj d dj i ijj n d = r = d = i =
c m w z + u y w z + v x

=

    
≥     

    
∑ ∑ ∑ ∑ and

0 1c≤ ≤ , hence: 

1,..., 1 1 1 1

11 ax
D s D m

d dj r rj d dj i ijj n d = r = d = i =
m w z + u y w z + v x

c=

    
⇒    

    
≥∑ ∑ ∑ ∑  

1 1 1 1

1,..., 1 1 1 1

1 1 1 1

ax

D s D m

d do r ro d do i io
d = r = d = i =

D s D m

d dj r rj d dj i ijj n d = r = d = i =

D s D m

d do r ro d do i io
d = r = d = i =

w z + u y w z + v x

m w z + u y w z + v x

w z + u y w z + v x

c

=

    
    
    

    
    
    

    
    
    

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

≥
 

Therefore, ( ) ( ) ( )G v,u,w,c F v,u,w F v,u,w≤ ≤  and the 
optimal value of model (9) is less than or equal to the optimal 
value of model (8). On the contrary, if ( )v,u,w  is the optimal 

value of model (8), then ( )v,u,w,c  is a feasible solution to 
model (9) 

with
1,..., 1 1 1 1

max
D s D m

d dj r rj d dj i ijj n d = r = d = i =
c = w z + u y w z + v x

=

    
    
    
∑ ∑ ∑ ∑ . 

Moreover, if ( )v,u,w,c  is the optimal solution to model (9), 

then ( ) ( )G v,u,w,c G v,u,w,c≥  . Since 

1,..., 1 1 1 1

11 ax
D s D m

d dj r rj d dj i ijj n d = r = d = i =
m w z + u y w z + v x

c=

    
= ⇒    

    
∑ ∑ ∑ ∑  

( ) ( )( )

1 1 1 1

1,..., 1 1 1 1

1 1 1 1

ax

D s D m

d do r ro d do i io
d = r= d = i =

D s D m

d dj r rj d dj i ijj n d = r= d = i =

D s D m

d do r ro d do i io
d = r= d = i =

w z + u y w z + v x

m w z + u y w z + v x

w z + u y w z + v x

c

=

    
    
    

    
    
    

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
=

 

, the following relation is true: 
. 

Hence, the optimal value of model (8) is less than or equal 
to the optimal value of model (9) and thus the optimal values 
of models (8) and (9) are equivalent.  

The efficiency values obtained for models (8) and (9) are 
equal. Therefore, it is possible to use model (9) to calculate the 
relative efficiency of two-stage units instead of model (8). 
Theorem 10: Models (9) and (10) are equivalent. 

Proof: Assume  is the optimal solution to model 

(9). If 
1 1

1
D m

d do i io
d = i =

t = c w z + v x 
 
 
∑ ∑ , then 

 is a feasible solution to model (10). 

Moreover, if  is the optimal solution to model (10), 

then . On the other hand,  

( )

( )

1 1

1 1

1 1

1 1

D s

r rod do
d = r=

D s

r rod doD s
d = r=

r rod do D m
d = r=

d do i io
d = i =

K V,U,W,c = W z + U y

w z + u y
= t w z + u y =

c w z + v x

= G v,u,w,c

 
        

 

∑ ∑

∑ ∑
∑ ∑

∑ ∑
 

Hence,  and the optimal value of 
model (9) is less than or equal to the optimal value of model 
(10). 

On the contrary, if  is the optimal solution to 

model (10), then it is considered as a feasible solution to 
model (9). In addition, if  is an optimal solution to 

model (9), then . 

On the other hand, 

( )

( )
1 1 1 1

1 1

.

1

D s D m

r rod do d do i io
d = r= d = i =
D s

r rod do
d = r=

G V,U,W,C

= W z + U y C W z + V x

= W z + U y = K V,U,W,C

   
      
   
∑ ∑ ∑ ∑

∑ ∑

    

Hence,  and the optimal value of 
model (10) is less than or equal to that of model (9). It is 
therefore concluded that the optimal values of models (9) and 
(10) are equal and these models are equivalent accordingly. 

Result 11: Models (8) and (10) are equivalent for having 
equal optimal values. 

Result 12: Model (9) calculates the relative efficiency of 
two-stage units. 

Result 13: Model (10) calculates the relative efficiency of 
two-stage units.  

Definition 14: Consider ( )v,u,w,c  as an optimal solution 
for evaluating by model (10).   is a reference 

for , if  

1 1 1 1
( )=0

D s D m

d dp r rp d dp i ip
d = r= d = i =

w z u y c w z v x+ − +∑ ∑ ∑ ∑  
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IV. EXAMPLE 
Here, we evaluate the performance of 5 two-stage units in 
Table I by using models (7) and (10). According to model (7), 
5 two-stage decision making units in Table I are assessed 
which are shown in the third column of Table II. By this 
direction to measure performance, units 2 and 5 are evaluated 
efficient. Also, as seen in the last column of Table II, the 
relative efficiency of two-stage units is expressed based on 
model (10). According to the results, units 1, 2, 3 and 5 are 
efficient. A comparison between classic models of two-stage 
DEA and new proposed models are provided in Figs. 2 and 3. 

  
Fig. 2 Comparison between absolute efficiency of model (1) and 

relative efficiency of model (7). 

 
Fig. 3 Comparison between absolute efficiency of model (4) and 

relative efficiency of model (10). 
 
   Data on 24 Taiwanese companies, which was prepared by 
Kao and Hwang [3], are shown in Table III. Insurance costs 
and research costs form the inputs of the first stage, while 
direct premiums and self-insurance premiums are the middle 
data. In addition, commitment profits and investment incomes 
are considered as the final outputs of the system. 
Table IV shows the efficiency scores of units are obtained 
using models (7) and (10) as well as the models proposed by 
Kao and Hwang [3] and Chen et al. [4]. According to the 
models proposed in this research, some units are efficient but 
according to previous models, none of the units are efficient. 
By solving model (7), units 2, 5, 12 and 22 are efficient and by 
model (10), units 1, 2, 5, 9, 12, 15, 19, 20, 22 and 24 are 
efficient. 

Table V reports reference two-stage DMUs for non-efficient 
two-stage units. For example, units 5, 12 and 22 are references 
of unit 8, based on model (7).  
Table III Data of 24 Taiwanese companies 

 
Table IV Results of different methods 

 
Table V Reference points of inefficient two-stage units 
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V. CONCLUSION 
In this research, the models developed by Kao and Hwang 

[3] and Chen et al. [4] were modified to be able to calculate 
the relative efficiency of two-stage decision making units. 
Some theorems were used to indicate that the proposed models 
are always capable for calculating the relative efficiency in 
two-stage DEA. By extending the dual models of multiplier 
forms extended in this paper, envelopment models can be 
obtained for production frontier projection of two-component 
inefficient units. Moreover, it is possible to test ranking, 
productivity, benchmarking based on the proposed models. 
Similar direction can be done to measure the relative 
efficiency in two-stage DEA with variable returns to scale 
assumption.  
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